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Introduction

Climate lobbying, broadly defined as efforts to influence policies and public attitudes on climate

change, plays a crucial role in shaping both environmental outcomes and public discourse

(Yeganeh, 2020; Schlichting, 2013). Over decades, climate lobbying has evolved from grassroots

advocacy to a multifaceted arena of influence, encompassing diverse actors such as

environmental NGOs, corporate interests, and international coalitions (Dunlap, 2013; Robinson,

2006; Stokes, 2017). These efforts have profound implications for the adoption of climate

policies, the regulation of emissions, and the promotion of renewable energy (Nisbet, 2014;

Rowell, 2013).

Despite its prominence, the integration of lobbying dynamics into formalized opinion dynamics

models remains an underexplored area. Opinion dynamics models, widely utilized across



disciplines, provide a robust framework for understanding how beliefs evolve within

heterogeneous populations (Hegselmann and Krause, 2002; Sobkowicz, 2020). These models,

which draw on concepts from social influence (Centola et al., 2007), statistical physics, network

theory, and behavioral economics, offer valuable insights into the mechanisms of consensus

formation and information diffusion (Das et al., 2014; Li et al., 2020). Their application to

climate lobbying presents a promising avenue to analyze the interplay between lobbying

strategies, public perception, and policy decisions (Sirbu et al., 2013; Sirbu et al., 2017).

The ALMONDO project bridges these gaps by developing and analyzing an opinion dynamics

model that incorporates behavioral biases and strategic lobbying. Its second activity is

specifically dedicated to developing a theoretical model that formalizes biases in individual

learning processes, applied to climate change. This approach provides fresh perspectives on the

interactions between public opinion, behavioral learning, and climate lobbying. The modeling

effort consists of three key tasks that collectively build an innovative framework to study how

opinion dynamics evolve under the influence of behavioral biases and strategic lobbying

activities.

The first task entailed conducting a comprehensive literature review to identify the behavioral

biases most relevant to climate-related interactions. Here we report the findings of that review.

Building on the insights provided by Botzen et al. (2021), our investigation highlighted the

significance of directional and credibility-motivated reasoning (Druckman and McGrath, 2019).

We incorporated these insights into a learning framework that accounts for underreaction to

signals (Epstein et al., 2010; Massari, 2020; Bottazzi et al., 2023).

The second task developed a mathematical model of opinion dynamics, wherein agents with

these behavioral biases interact within a network and are influenced by lobbyists. The framework

is inspired by the Continuous Opinions and Discrete Actions model (Martins, 2008) and

incorporates behavioral learning dynamics. Agents evaluate the likelihood of climate-related

events based on probabilistic models, updating their beliefs upon receiving signals. Their updates

are skewed by behavioral biases. These biases shape their responses to new information, tilting

updates along the dimensions of directional reasoning and the credibility of sources.



Lobbyists, modeled as external agents who do not change opinion, aim to shape public beliefs by

strategically disseminating information in support of specific probabilistic models. Operating

under budget constraints, they engage in costly signaling to minimize the average

Kullback-Leibler divergence between individual beliefs and their preferred model. This dynamic

highlights the strategic nature of lobbying efforts in swaying public opinion.

The third task focused on analyzing the model's properties, both theoretically and

computationally. Analytical exercises investigated two scenarios: one with a generic number of

agents and a single lobbyist interacting over multiple periods, and another with two agents and

two competing lobbyists interacting over one period. While the first exercise highlights the basic

incentive structure and constraints of lobbying activities, the second one underscores their

strategic interdependence and the broader implications for belief formation and

consensus-building. Several numerical exercises were performed to assess the properties of the

model in more complex scenarios. We simulated cases with zero, one and two opposing

lobbyists. In each case, we considered two population structures: one with homogeneous agents

in terms of under-reaction and no motivated reasoning, and another with non homogeneous

agents and motivated reasoning.

Model characteristics

In this section, we describe the model introduced, concentrating on three important elements: (1)

behavioral features that characterize the agents populating our models (connecting them with the

evidence in the literature that drove our modeling choices), (2) agent interaction, and (3)

lobbyists behavior.

Behavioral Learning on climate change

Our exploration of the literature identified five key contributions that shaped the way in which

individuals in our model behave. A general perspective is provided by Botzen et al. (2021).

Indeed, the authors individuate and discuss six behavioral biases that affect individuals when

dealing with low-probability high-consequences risks, such as climate change. They are

simplification, availability, a finite pool of worries, myopia, ‘‘not in my term of office” bias, and



herding. Simplification refers to the tendency to concentrate on either the chance of a

climate-related disaster happening or the severity of its possible outcomes, instead of making a

rational choice involving both dimensions. Availability concerns agents underestimating the risk

of a climate-related event until they are directly or indirectly affected (e.g., through social

connections). Finite pool of worries refers to individuals having a limited amount of “emotional

resources” to be allocated to sources of concern, hence, when urgent worries are experienced,

climate change concern is reduced. Myopia refers to the tendency of evaluating decisions (such

as investments or economic policies for climate mitigation) on a time span that is too short. The

“not in my term of office” bias refers to the tendency of politicians to delay necessary but

unpopular decisions regarding low-probability negative events, fearing the adverse impact on

electoral support. Herding refers to the large influence that social connections have on the

behavior of individuals. Among these six biases, those that are relevant for our analysis are

simplification, availability, and herding; since to capture myopia, the finite pool of worries, and

the “not in my term of office” bias one should consider a more general model with different

risks, policies, and politicians. In our model, simplification occurs as agents base their decisions

to signal for or against climate change solely on their subjective probabilities. Availability and

herding follow, instead, from the network structure. Indeed, we assume that agents are embedded

in a social network and update their beliefs on the basis of the signals they receive from their

acquaintances.

On top of the aforementioned three biases, we considered the discussion provided by Druckman

and McGrath (2019) on the presence of motivated reasoning in the process of climate change

belief formation. Motivated reasoning indicates that the way in which agents process information

depends on its goals. In particular, the authors distinguish between accuracy motivation and

directional motivation. Accuracy motivation means that agents strive to be as accurate as

possible. For instance, they tend to have high confidence in the results of a scientific study if the

prior belief about the reliability of the scientists involved is high. On the contrary, directional

motivation indicates that agents want to get to a given predetermined conclusion, hence, they

interpret information in an asymmetric way depending on whether it agrees or disagrees with

prior beliefs. While acknowledging the vast evidence pointing to motivated reasoning in belief

formation processes on climate change, the authors argue that empirical and experimental studies

in the literature do not allow one to distinguish between accuracy and directional motivation



because of a form of observational equivalence. For the sake of our analysis, we focused on

directional motivation. Indeed, introducing accuracy motivation means equipping agents with a

trustworthiness belief distribution over the agents connected to them, including lobbyists. This

introduces a layer of complexity and discretionality to the analysis that we preferred to avoid.1

Directional motivation, as well as being widely invoked in the climate change literature (see,

e.g., Hart and Nisbet, 2012), can be easily included in our model assuming that prior beliefs

influence the way in which those priors are updated in posteriors.

Finally, we considered three contributions on learning with under-reaction (Epstein et al. 2010;

Massari 2020; Bottazzi et al., 2023). These contributions provided us with the basic

mathematical framework needed to model the belief updating process with the aforementioned

cognitive biases. The key idea is that agents build their (subjective) conditional probabilities by

means of a convex combination of the conditional probabilities of some models (i.e., probability

distributions over future events). The weights used to combine the models can be thought of as

the probabilities assigned to each model to be the correct one. Those weights evolve over time

depending on the sequence of signals observed and the way in which they are updated manifests

the biases of the agents. In particular, under-reaction means that agents convexly combine the

Bayesian update with the prior, such that they react to new information less than what a pure

Bayesian agent would have done. The quantity determining the convex combination is generally

referred to as λ, and we explored two scenarios for it. In the first scenario, it is an agent specific

(constant) parameter. In the second scenario, it is a function of priors and the nature of the signal.

Hence, if a signal favoring a given model is received and the agent assigns high confidence to

such a model being the correct one, then it strongly updates weights in favor of the model. On

the contrary, if the received signal favors a model to which the agent attaches very low

confidence, then weights remain (almost) untouched. We further assumed that an agent specific

parameter ɑ gauges the strength of such a bias. These features directly capture the idea of

directional motivated reasoning. The mathematical equations describing the evolutions of beliefs

involve parameters that shall be calibrated during the model calibration activity exploiting the

results of the experiment.

1 Nonetheless, this paves the way to a future contribution in which we extend the model to
consider accuracy motivation.



Agents’ Interaction and Lobbyists

Interaction among agents is mediated by a network of connections. We assumed that such a

network is exogenously provided, as it will be shaped during the calibration phase of the project

to respect the properties empirically observed during the data mining activity. Over such a

network, agents send and receive signals for a finite number of periods. Signals can be of two

types: either supporting the occurrence of a negative climate-related event after the finite number

of interaction periods, or dismissing it. For the sake of our analysis, we assumed that the agents

form their beliefs combining two probabilistic models, a “pessimist” (or “realist”) one and an

“optimist” one. The key difference between the two models is that the first one attaches a larger

probability to the negative event to occur than the second one. Hence, in each interaction period,

one of the agents in the network is randomly selected to communicate to all of its connections in

this round. The type of the signal (either supporting the occurrence of the event or dismissing it)

is drawn according to the subjective conditional probability distribution of the agent. In this way,

we capture the simplification bias described above assuming a sort of discrete-choice decision

rule. The signal is sent to all the individuals connected to the communicating agent and their

subjective probabilities are updated according to the behavioral learning procedure illustrated

above. In the baseline version of the model, lobbyists are not active and, as the rounds of

interaction go by, agents’ subjective probabilities evolve assimilating the signals received from

connections. A numerical exploration of the evolution of opinions (i.e., subjective conditional

probabilities) is provided at the beginning of the “Numerical Exercises” section.

Then, lobbyists are added to the model. They can be thought of as external agents with fixed

opinions that, in every period, can send signals to the individuals communicating on the social

network. Each lobbyist is assumed to support one of the two models. In each period, lobbyists

send signals in favor of the supported model to individuals. Those signals are processed by

individuals in the social network in the same manner of signals coming from peers. Hence, they

update beliefs according to the procedure described above. The objective of each lobbyist is to

minimize the expected average relative entropy (or Kullback-Leibler divergence) of the final

individual beliefs with respect to the supported model. Sending a signal is costly and lobbyists

must take their communication decisions under a budget constraint. For the sake of simplicity,

we assumed that the cost of sending a signal is constant and uniform. Notice that, on the one



hand, as the number of active lobbyists is larger than one, a strategic interaction framework

naturally emerges. Indeed, we exploited notions and techniques from game theory to study the

equilibrium behavior of lobbyists in a special case (see the section “Theoretical Exercises”

below). On the other hand, in the “Numerical Exercises” section, we performed several

simulations assuming that lobbyists randomly draw their communication strategy. In this way,

we could better understand how the model reacts to different incarnations of the lobbying

activity. Notice that, during the model calibration activity, we shall use the results of the data

mining activity on lobbies in Europe to calibrate lobbying behavior in terms of communications

strategies and budgets.

Theoretical Exercises

In this section, we propose two theoretical exercises in special cases that shed some lights on

some basic properties of the model. In the first exercise, we analyzed a situation in which only

one lobbyist is active in a rather generic social network. This unveils the basic incentive structure

of the lobbyists and the effect of the budget constraint. In the second exercise, instead, we

assumed that two lobbyists (supporting opposite models) are active in a social network populated

by two individuals (an “influencer” and a “follower”) learning in a Bayesian way (neither

under-reaction nor directional motivated learning are active) and interacting for one period. This

unveils the effects of strategic interaction in the simplest scenario.

One Lobbyist

In this exercise, a generic number N of individuals interact on a generic social network for a

number T of rounds. Agents are characterized by behavioral biases in learning according to the

discussion above. At the same time, for this particular exercise, it is not important whether the

parameter characterizing the convex combination of the prior with the Bayesian update in the

updating rule is a constant parameter or displays the directional motivated reasoning. Indeed, the

important feature is that, as a signal from the lobbyist is received by the agent, the conditional

probability of the individual moves towards the model supported by the lobbyist. Hence, the

constraint minimization problem of the lobbyist can be easily set up considering the expected



average relative entropy of final beliefs with respect to the supported model as objective function

and the budget constraint composed by the value of signals sent smaller or equal than the budget.

Given the properties of the relative entropy, one immediately notices that the objective function

is strictly decreasing in the number of signals sent. Hence, the optimal communication strategy

of the lobbyist is always to try to exhaust the budget constraint sending signals to agents. More

specifically, we need to distinguish between two cases. In the first one the budget is so large that

the lobbyist can send a signal to each agent in each period. In this case the optimal strategy is to

communicate to each agent in each period. In the second case, instead, the budget is not enough

to always signal to everyone. In this scenario, every optimal strategy will involve sending a

number of signals equal to the floor of the budget divided by the unitary cost of a signal. At the

same time, deciding to which agents and in which periods to send signals is not straightforward,

since the interaction between the behavioral biases and the communication among agents

complicates the analysis. In the special case in which the network is composed by only one

agent, then the timing of the signals becomes unimportant and every communication strategy that

exhausts the budget constraint is optimal.

Two Agents and Two Lobbyists

In this exercise, on the one hand, we simplified the social network structure, while, on the other

hand, we considered two lobbyists supporting opposite models. In this way, we were able to flesh

out the strategic interaction that characterizes lobbying activity. The social network involves only

two agents. One of them, identified as agent A, is an “influencer”, while the other one, agent B, is

the “follower”. Indeed, the only ex-ante difference between the two is that A always

communicates to B. Both agents are Bayesians, hence, no bias is active for any of them. This is a

simplifying assumption that allows one to easily compute subjective conditional probabilities. At

the same time, considering the framework without biases acts as a valuable benchmark for the

rest of the analysis. Individuals interact for only one round and lobbyists have enough budget to

send only one signal. Lobbyists can randomize their choices, hence, their problem is to choose

the mixed strategy that is a best reply to the decision of the rival. A mixed strategy, in this

setting, is a probability distribution over the two actions “send a signal to A” and “send a signal

to B”. The payoff of the ensuing game is simply the expected average relative entropy emerging

from the combination of mixed strategies chosen by the lobbyists.



The outcomes of the game can be studied by means of the Nash equilibrium concept: a Nash

equilibrium is a combination of mixed strategies (one for each lobbyist) such that no one has

incentive to deviate (see Mas-Colell et al., 1995). This can be easily done by analyzing a plot

showing, for both lobbyists, the best reply probability that one lobbyist attaches to send a signal

to agent A as a function of the probability that the opponent attaches to the same action. The

points in which the functions cross are the Nash equilibria of the game. Figure 1 shows such a

plot for a situation in which the pessimist and the optimist models are extreme and opposite. In

such a scenario, a unique Nash equilibrium emerges: both lobbyists send a signal to agent A, the

influencer.

Figure 1 Mixed strategies of the lobbyists for the case in which the probability of the negative climate event is

0.99 for the pessimist model and 0.01 for the optimist model. is the probability the lobbyist supporting theσ
𝐴
𝑜



optimist model attaches to send a signal to A in its mixed strategy, is the probability the lobbyist supportingσ
𝐴
𝑝

the pessimist model attaches to send a signal to A in its mixed strategy.

The same conclusion is obtained in the case in which the probability attached to the negative

climate event is rather extreme for one of the two models and intermediate for the other. This

clearly appears in Figure 2, where we show the best reply mixed strategy profile in the case in

which the probability attached to the negative event is 0.5 for the pessimist model and 0.1 for the

optimist model and in the case in which the probabilities are 0.9 for the pessimist model and 0.5

for the optimist model.

Figure 2 Mixed strategies of the lobbyists for the case in which the probability of the negative climate event is

0.5 for the pessimist model and 0.1 for the optimist model (left) and for the case in which the probability of the

negative climate event is 0.9 for the pessimist model and 0.5 for the optimist model (right). is theσ
𝐴
𝑜

probability the lobbyist supporting the optimist model attaches to send a signal to A in its mixed strategy, isσ
𝐴
𝑝

the probability the lobbyist supporting the pessimist model attaches to send a signal to A in its mixed strategy.

The reason for the outcomes observed in Figures 1 and 2 is that, for at least one of the two

lobbyists, sending a signal to the “influencer” is always the best choice.

When, instead, the probabilities attached to the event by the models tend to be close and

asymmetric, the only Nash-equilibrium mixed-strategy profile involves both lobbyists assigning

non-zero probabilities to both actions. Figure 3 supports such a point showing the best reply

mixed strategy profile when the probability attached to the negative event is 0.99 for the



pessimist model and 0.9 for the optimist model and when the probabilities are 0.1 for the

pessimist model and 0.01 for the optimist model.

Figure 3 Mixed strategies of the lobbyists for the case in which the probability of the negative climate event is

0.99 for the pessimist model and 0.9 for the optimist model (left) and for the case in which the probability of

the negative climate event is 0.1 for the pessimist model and 0.01 for the optimist model (right). is theσ
𝐴
𝑜

probability the lobbyist supporting the optimist model attaches to send a signal to A in its mixed strategy, isσ
𝐴
𝑝

the probability the lobbyist supporting the pessimist model attaches to send a signal to A in its mixed strategy.

Finally, in Figure 4, we present the strategic interaction emerging when the probabilities of the

models are intermediate and close (probability of 0.55 of observing the negative event under the

pessimist model and probability of 0.45 of observing the negative event under the optimist

model). Here, three Nash equilibria emerge, in two of them the lobbyists coordinate in sending

the signal to the same individual (either the “influencer” or the “follower”), in the remaining one

they randomize their choices.



Figure 4 Mixed strategies of the lobbyists for the case in which the probability of the negative climate event is

0.55 for the pessimist model and 0.45 for the optimist model. is the probability the lobbyist supporting theσ
𝐴
𝑜

optimist model attaches to send a signal to A in its mixed strategy, is the probability the lobbyist supportingσ
𝐴
𝑝

the pessimist model attaches to send a signal to A in its mixed strategy.

Notice that in the cases of Figures 3 and 4, somehow counterintuitively, lobbyists may have

incentive to signal to the “follower”. This occurs because, depending on the probabilistic

environment they face, they may have incentive to either copy the behavior of the opponent or to

differentiate from it. This is particularly clear in Figure 3. Indeed, we have that for one lobbyist it

is optimal to assign zero probability to signalling to the “influencer” when the probability

attached to the same strategy by the opponent is low, while it is optimal to attach full probability

to it when the opponent assigns it a sufficiently high probability. For the other, instead, it is the

other way round. Interestingly enough, the lobbyist that would like to differentiate is the one



supporting the pessimist model when models’ probabilities are close to 1, while it is the other

one when probabilities are close to 0. Hence, we can infer that two forces are at play: one

working to offset the signaling action of the rival influencing the same agent, and the other

striving to differentiate in order to ensure an effect on the opinions of an individual. The

interplay of these forces may create incentives for one (or both) lobbyists to signal to the

“follower”.

Following the discussion of Botzen et al. (2021), climate-related negative events are

low-probability–high consequence events. Hence, among the cases presented, the one shown in

the right panel of Figure 3 appears the most realistic one. This indicates that we expect “rational”

lobbyists to randomly choose between signalling to the “influencer” and the “follower”

according to a probability distribution that is slightly skewed towards sending a signal to the

“influencer”.

Numerical Exercises

In this section, we discuss a set of numerical simulations in order to describe the basic dynamics

of the model. Results are displayed in the subsections below using different criteria: we are

interested in the evolution in time of subjective opinions, and in the distribution of opinions

during the simulation and after reaching the steady state. In all cases and scenarios, at the

beginning of the simulation the agents’ subjective probabilities are uniformly distributed in [0, 1]

(see Figure 5).

First, we focus on simulations without lobbyists, aiming to showcase the model’s benchmark

behaviour before introducing lobbyist strategies. We consider two cases: the case with

homogeneous agents (i.e the degree of underreaction is equal for all the agents) and noλ

motivated reasoning, and the case with heterogeneous agents (i.e the degree of underreaction λ

can be different between agents) and motivated reasoning.

The two cases display different asymptotic behaviour. In particular, in the case of homogeneous

agents, for a number of iterations sufficiently large, subjective probability distributions collapse

to a single realisation (see Figures 6 and 9). The speed at which the convergence takes place



depends on the degree of underreaction (λ) set exogenously for all the agents: the higher the

degree of underreaction ( closer to 1), the longer the convergence time to a steady state.λ

Besides affecting the speed of convergence, the degree of underreaction has an effect on the

dynamics of the transient period. In fact, when the agent is closer to bayesian rationality (λ closer

to 0), the subjective probability distribution tends to polarize during the transient phase, as agents

who receive a given signal suddenly and strongly update their own beliefs in the direction of the

new information (Figure 7). After some iterations of “cycling” through the competing models,

beliefs quickly converge to a consensus. In contrast, when agents have a higher degree of

under-reaction (λ closer to 1) the transition to the steady state is slower and smoother (Figures 9

and 10).

In the case with motivational reasoning, where the underreaction parameter is conditional onλ

the characteristics of the individual agent and of the signal received, the subjective probability

distribution converges quickly to a Bernoulli distribution, as agent’s beliefs polarize towards the

optimist or the pessimist model (Figures 12-14). This is a very interesting behavior, as it is a

more realistic case: rarely a population will converge on a single opinion, but generally clusters

form. Therefore we have strong indications that the motivated reasoning mechanism we

implemented is key to more realistic simulations.

Next, we introduce one lobbyist in the picture. At this stage, the “strategy” adopted by lobbyists

is uniformly random, although in the future we aim to introduce more sophisticated and properly

strategic behaviour into the picture. More in detail, the lobbyist decides to send a signal or not to

send a signal with a probability of 50% for each agent. This means that for each time step, on

average, it will send a signal to 50% of the agents shifting their beliefs towards their supported

model. We also assume that the budget of the lobbyist is enough to support such a

communication strategy. If the number of steps is T and the number of agents is N, with T

sufficiently large, the budget of the lobbyist must be (approximately) TN/2.

The introduction of a single lobbyist in the model at this stage seems to drastically speed up the

convergence of the simulation towards the outcome supported by the lobbyist. This comes as no

surprise, as the introduction of lobbyists with a randomly generated strategy amounts to

uniformly increasing the number of signals received on average by the agents in support for one



model with respect to the other (Figures 15 and 16). Note that with the current configuration, the

network emits one signal per timestep, while a single lobbyist emits N/2 signals and therefore is

able to move the distribution towards their supported model very quickly. Interestingly, even

when the motivated reasoning bias is considered, the signals sent by the lobbyist are strong

enough to stir the network toward their preferred model and achieve a consensus on it (Figures

17 and 18).

Finally, we take into consideration the case with two lobbyists, both with the same uniform

strategy, but supporting opposing models (Figures 19-22). In this case we see that the impact of

the two lobbyists balances out, as the simulations display the same asymptotic behaviour as in

the case with no lobbyist, both with homogeneous and heterogeneous agents. The only

noticeable difference is in the speed of convergence, as simulations take less iterations to

converge. This result should come as no surprise, as introducing lobbyists in the picture increases

the average number of signals emitted per time step from 1 to T + 1.

Baseline Scenario, homogeneous agents, λ= 0.2

In the following numerical exercise, the probability of the negative climate event is = 0.99 for𝑝
𝑝

the pessimist model and = 0.01 for the optimist model. Underreaction is low.𝑝
𝑜



Figure 5 Subjective probability distribution at t = 0 for a typical run of the model. Initially, the agents’

subjective probabilities are uniformly distributed. This initial distribution is common to both cases (both

homogeneous and heterogeneous agents) and all scenarios inside them.



Figure 6: Evolution plot of agents’ subjective probabilities for a typical run of the model with homogeneous

agents (underreaction parameter λ = 0.2). The probability of the negative climate event is = 0.99 for the𝑝
𝑝

pessimist model and = 0.01 for the optimist model. Each line in the plot corresponds to one agent, who𝑝
𝑜

changes their subjective probability while interacting with others. The colour encodes the initial agent opinion:

from blue to red for subjective probabilities from 0 to 1. We note that the opinions converge to one value

only.



Figure 7 Subjective probability distribution at round t = 100 for a typical run of the model with homogeneous

agents (underreaction parameter λ = 0.2). The probability of the negative climate event is = 0.99 for the𝑝
𝑝

pessimist model and = 0.01 for the optimist model.𝑝
𝑜



Figure 8 Subjective probability distribution at the steady state for a typical run of the model with

homogeneous agents underreaction parameter λ = 0.2). The probability of the negative climate event is =𝑝
𝑝

0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑜

Baseline Scenario, homogeneous agents, λ = 0.8

In the following numerical exercise, the probability of the negative climate event is = 0.99 for𝑝
𝑝

the pessimist model and = 0.01 for the optimist model, similar to the previous case. However𝑝
𝑜

we increase the underreaction parameter.



Figure 9 Evolution plot of the agents’ subjective probabilities for a typical run of the model with

homogeneous agents (the degree of underreaction is λ = 0.8 for all agents over time). The probability of the

negative climate event is = 0.99 for the pessimist model and = 0.01 for the optimist model;𝑝
𝑝

𝑝
𝑜



Figure 10 Subjective probability distribution at round t = 100 for a typical run of the model with

homogeneous agents (underreaction parameter λ = 0.8). The probability of the negative climate event is =𝑝
𝑝

0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑜



Figure 11 Subjective probability distribution at the steady state for a typical run of the model with

homogeneous agents (underreaction parameter λ = 0.8). The probability of the negative climate event is =𝑝
𝑝

0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑜

Baseline Scenario, heterogeneous agents, α = 0.5

In the following numerical exercise, the probability of the negative climate event is

= 0.99 for the pessimist model and = 0.01 for the optimist model, however𝑝
𝑝

𝑝
𝑜

the λ parameter is not fixed but calculated for each agent using motivated

reasoning, controlled by a new parameter α, controlling the strength of directional

reasoning.



Figure 12 Evolution plot of agents’ subjective probabilities for a typical run of the model with heterogeneous

agents (directional reasoning parameter = 0.5). The probability of the negative climate event is = 0.99 forα 𝑝
𝑝

the pessimist model and = 0.01 for the optimist model.𝑝
𝑜



Figure 13 Subjective probability distribution at round t = 100 for a typical run of the model with

heterogeneous agents (directional reasoning parameter = 0.5). The probability of the negative climate eventα

is = 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑝

𝑝
𝑜



Figure 14 Subjective probability distribution at the steady state for a typical run of the model with

heterogeneous agents (directional reasoning parameter = 0.5). The probability of the negative climate eventα

is = 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑝

𝑝
𝑜

One Lobbyist Scenario, homogeneous agents, λ = 0.2

In the following numerical exercise, the probability of the negative climate event is

= 0.99 for the pessimist model and = 0.01 for the optimist model. We have𝑝
𝑝

𝑝
𝑜

one lobbyist supporting the optimist model, and uniform agents with low

underreaction.



Figure 15 Evolution plot of agents’ subjective probabilities for a typical run of the model with one lobbyist

and homogeneous agents (underreaction parameter = 0.2). The probability of the negative climate event isλ 𝑝
𝑝

= 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑜



Figure 16 Subjective probability distribution at the steady state for a typical run of the model with one lobbyist

and homogeneous agents (underreaction parameter = 0.2). The probability of the negative climate event isλ 𝑝
𝑝

= 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑜

One Lobbyist Scenario, heterogeneous agents, α = 0.5

In the following numerical exercise, the probability of the negative climate event is

= 0.99 for the pessimist model and = 0.01 for the optimist model. We have𝑝
𝑝

𝑝
𝑜

one lobbyist supporting the optimist model and heterogeneous agents with

directional reasoning.



Figure 17 Evolution plot of agents’ subjective probabilities for a typical run of the model with one lobbyist

and heterogeneous agents (directional reasoning parameter = 0.5). The probability of the negative climateα

event is = 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑝

𝑝
𝑜



Figure 18 Subjective probability distribution at the steady state for a typical run of the model with one

lobbyist and heterogeneous agents (directional reasoning parameter = 0.5). The probability of the negativeα

climate event is = 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑝

𝑝
𝑜

Two lobbyists scenario, homogeneous agents, λ= 0.2

In the following numerical exercise, the probability of the negative climate event is

= 0.99 for the pessimist model and = 0.01 for the optimist model. We have𝑝
𝑝

𝑝
𝑜

two opposing lobbyists with the same strategy and unlimited budget.



Figure 19 Evolution plot of agents’ subjective probabilities for a typical run of the model with two lobbyists

and homogeneous agents (underreaction parameter = 0.2). The probability of the negative climate event isλ 𝑝
𝑝

= 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑜



Figure 20 Subjective probability distribution at the steady state for a typical run of the model with two

lobbyists and homogeneous agents (underreaction parameter = 0.2). The probability of the negative climateλ

event is = 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑝

𝑝
𝑜

Two lobbyists scenario, heterogeneous agents, α= 0.5

In the following numerical exercise, the probability of the negative climate event is = 0.99 for𝑝
𝑝

the pessimist model and = 0.01 for the optimist model.𝑝
𝑜



Figure 21 Evolution plot of agents’ subjective probabilities for a typical run of the model with two lobbyists

and heterogeneous agents, p_o = 0.01, p_p = 0.99, α = 0.5



Figure 22 Subjective probability distribution at the steady state for a typical run of the model with two

lobbyists and heterogeneous agents (directional reasoning parameter = 0.5). The probability of the negativeα

climate event is = 0.99 for the pessimist model and = 0.01 for the optimist model.𝑝
𝑝

𝑝
𝑜
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